A note on type of weak-$L^1$ and weak-$\ell ^1$ spaces
نویسندگان
چکیده
منابع مشابه
On weak compactness in L1 spaces
We will use the concept of strong generating and a simple renorming theorem to give new proofs to slight generalizations of some results of Argyros and Rosenthal on weakly compact sets in L1(μ) spaces for finite measures μ. The purpose of this note is to show that a simple transfer renorming theorem explains why L1(μ)-spaces, for finite measures μ, share some properties with superreflexive spac...
متن کاملWeak hyper semi-quantales and weak hypervalued topological spaces
The purpose of this paper is to construct a weak hyper semi-quantale as a generalization of the concept of semi-quantale and used it as an appropriate hyperlattice-theoretic basis to formulate new lattice-valued topological theories. Based on such weak hyper semi-quantale, we aim to construct the notion of a weak hypervalued-topology as a generalized form of the so-called lattice-valued t...
متن کاملA Note on Spaces with Locally Countable Weak-bases
In this paper, we show that a regular space with a locally countable weak-base is g-metrizable. Secondly, we establish the relationships between spaces with a locally countable weak-base (resp. spaces with a locally countable weak-base consisting of א0-subspaces) and metric spaces (resp. locally separable metric spaces) by means of compact-covering maps, 1-sequence-covering maps, compact maps, ...
متن کاملA note on weak dividing
We study the notion of weak dividing introduced by S. Shelah. In particular we prove that T is stable iff weak dividing is symmetric. In order to study simple theories Shelah originally defined weak dividing in [6] . This notion is overshadowed by that of dividing, as the first author proved that dividing is the right well-behaved notion for simple theories [2],[3],[5],and [4]. However Dolich’s...
متن کاملWeak and $(-1)$-weak amenability of second dual of Banach algebras
For a Banach algebra $A$, $A''$ is $(-1)$-Weakly amenable if $A'$ is a Banach $A''$-bimodule and $H^1(A'',A')={0}$. In this paper, among other things, we study the relationships between the $(-1)$-Weakly amenability of $A''$ and the weak amenability of $A''$ or $A$. Moreover, we show that the second dual of every $C^ast$-algebra is $(-1)$-Weakly amenable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 2019
ISSN: 0137-6934,1730-6299
DOI: 10.4064/bc119-11